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ABSTRACT
Knowledge graph (KG), integrating complex information and con-
taining rich semantics, is widely considered as side information
to enhance the recommendation systems. However, most of the
existing KG-based methods concentrate on encoding the structural
information in the graph, without utilizing the collaborative signals
in user-item interaction data, which are important for understand-
ing user preferences. Therefore, the representations learned by
these models are insufficient for representing semantic information
of users and items in the recommendation environment. The com-
bination of both kinds of data provides a good chance to solve this
problem, but it faces the following challenges: i) the inner correla-
tions in user-item interaction data are difficult to capture from one
side of the user or item; ii) capturing the knowledge associations
on the whole KG would introduce noises and variously influence
the recommendation results; iii) the semantic gap between both
kinds of data is hard to alleviate.

To tackle this research gap, we propose a novel duet representa-
tion learning framework named KADM to fuse local information
(user-item interaction data) and global information (external knowl-
edge graph) for the top-𝑁 recommendation, which is composed
of two separate sub-models. One learns the local representations
by discovering the inner correlations in local information with a
knowledge-aware co-attention mechanism, and another learns the
global representations by encoding the knowledge associations in
global information with a relation-aware attention network. The
two sub-models are jointly trained as part of the semantic fusion
network to compute the user preferences, which discriminates the
contribution of the two sub-models under the special context. We
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conduct experiments on two real-world datasets, and the evalu-
ations show that KADM significantly outperforms state-of-art
methods. Further ablation studies confirm that the duet architec-
ture performs significantly better than either sub-model on the
recommendation tasks.
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1 INTRODUCTION
With the rapid development of Internet technology, the amount of
online data has increased sharply. The massive information would
overwhelm users so that it is time-consuming for them to filter out
their favorite information among a large number of choices. To
alleviate this effect, recommendation systems have become a vital
and indispensable tool to assist users in making decisions.
Prior Works and Limitations. The recommendation system at-
tracts intensive research interest and derives broad applications
[29]. Conventional collaborative filtering (CF) methods [12, 50],
which provide recommendation based on the user-item interaction
data, have made a significant success. However, CF-based methods
usually suffer from the data sparsity and cold-start issues [41] due
to the fact that even the most active users just have interacted with
a small percentage of items in the recommendation environment.
Meanwhile, most of them are unable to thoroughly encode the
collaborative signals in interaction data, because they can only cap-
ture one-side influence from users or items and model the shallow
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Figure 1: Illustration of local Information and global infor-
mation. Local information is the user-item interaction data,
which is a bipartite graph with users and items and inter-
actions. Global information is a heterogeneous knowledge
graph with multiple types of relationships and entities.

correlations between users and items. To solve these issues, many
methods try to exploit different types of side information (e.g., item
description [5], user profile [10] and social network [16]). For in-
stance, a number of trust-aware recommendation methods [9, 23]
are proposed based on the assumption that users may share similar
preferences with their trusted users.

Recently, with the development of the semantic web, introducing
knowledge graphs (KGs) into recommendation systems as side in-
formation has attracted extensive attention. In contrast with other
forms of side information (e.g., social network), which are generally
limited to capturing features with homogeneous information, KGs
are heterogeneous graphs connecting various types of features re-
lated to users or items in a unified global representation space [33].
The structural information in KGs helps to explore the potential
connections between users or items from different perspectives,
which is beneficial for improving the performance of recommenda-
tion algorithms [3, 22, 34]. However, existing KG-based methods
still share several common limitations: First, most methods focus
on knowledge associations in KG without exploiting the user-item
interaction data, which are insufficient to represent user prefer-
ences; Second, most studies conduct information propagation on
the whole graph, which may introduce negative noise from irrele-
vant entities; Thirdly, most works equally treat information from
different relation-paths, which is contrary to the real recommenda-
tion scenarios.
Motivations and Relations. Comprehensive analysis reveals that
user-item interaction data and KG could indicate the people’s deci-
sion patterns from different perspectives. Concretely, the collabora-
tive signals in user-item interaction could introduce two kinds of
effects from both item and user levels. For item level, users tend to
buy items similar to their historical items, which reflects historical
unchanged and independent user preferences. For another, people
may be more likely to choose such item that is frequently purchased
by other users together with the item they like. Moreover, there are
rich knowledge associations in KG, which could indicate semantic
relations between users or items from the attribute level. For ex-
ample, if two movies have the same director or actor, a user who
has watched one may be also willing to watch the other. Further-
more, there are multiple kinds of relation-paths in KG. The different

relation-paths would have varying degrees of impact on user pref-
erences. For example, a user is more likely to choose movies from
the perspective of movie casting rather than the director.

In this paper, we respectively define the user-item interaction
data and knowledge graph as the local and global information
according to their characteristics and different impacts for the rec-
ommendation, as illustrated in Fig. 1. Following the above analysis,
the two-fold information can be combined and complemented each
other to jointly infer a user’s decision on the target item, but with
the following challenges: 1) How to discover the inner correlations
between users and items in local information? 2) How to eliminate
the negative effect of noise triplets and model the influence of dif-
ferent relation-paths in global information? 3) How to alleviate the
semantic gap between local and global information?
Methodologies and Results. To address the above challenges, we
propose a Knowledge-Aware Duet Model (named KADM) com-
prised of two sub-models to respectively formulate user preferences
based on local and global information: i) Local model, which com-
putes the local representation of each user or item by encoding
the collaborative signals in local information. It firstly represents
each user and item with their collaborative neighbors. Secondly, it
captures the inner correlations by calculating the attention matrix
based on the collaborative neighbors and further obtains the atten-
tion vectors with pooling operation. Finally, it could generate the
local representations of users and items by attentively aggregating
adjacent neighbors’ representation that reflects users’ preferences
from both user and item side. ii) Global model, which learns the
global representation of each user or item by capturing the rich
knowledge associations in global information. It firstly extracts
the enclosing subgraph of the user-item pair from global informa-
tion. Secondly, it attentively aggregates the semantic information
propagated by different relation-paths in subgraph to update the
representations of nodes. Finally, it could generate the global repre-
sentations of users and items by combining the aggregated features
with their own features.

Then, since local information as well as global information could
complement each other to jointly influence a user’s decision on
target item and the importance of themwould vary for distinct user-
item pairs, we utilize a gating network to dynamically weigh the two
sub-models, which has been proven useful to control importance of
different information flows in the network, i.e., the two sub-models
are jointly trained as part of the gating network.

The major contributions in this paper are summarized as follows:

• General Concepts:We distinguish the concepts of the user-
item interaction data from KG according to their character-
istics and different impacts for the recommendation. Then
we respectively define them as local and global information.

• Duet RecommendationArchitecture:Wepropose a novel
duet architecture model for top-𝑁 recommendation, which
takes advantage of both global and local views to investigate
user preferences. In the duet recommendation architecture,
local model takes the knowledge-aware co-attention mech-
anism to discover the inner correlations by encoding the
collaborative signals in local information, and global model
utilizes the relation-aware GNN to capture the knowledge
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associations in the enclosing subgraph extracted from global
information.

• Gating network Semantic Fusion: To eliminate the se-
mantic gap between the two types of information, the gating
network, based on a linear unit, dynamically weighs different
impacts from two information according to specific contexts.

• Outstanding Performance:We deploy KADM on two real-
world datasets. The experiment results demonstrate the state-
of-the-art performance of KADM, the effectiveness of the
proposed components, as well as its possible interpretability
for modeling user preferences.

2 RELATEDWORK
This section reviews the related works that are relevant to our work.
CF-based recommendation. Collaborative filtering (CF) is a tech-
nique widely used in recommender systems, which leverages the
user-item feedback data to model the user preference. It mainly
consists of neighbor-based methods [19, 29] and matrix factoriza-
tion (MF) methods [20, 26]. And recently, many CF approaches
are combined with new deep learning techniques [7, 48]. However,
although these methods could sometimes achieve good recommen-
dation performance, most of them still suffer from data sparsity
and cold-start problems, and can only model shallow relationships
between users and items.
KG-based recommendation. Knowledge graph (KG) is widely
used as auxiliary information to enhance recommendation sys-
tems, and has achieved effective results. It mainly consists of three
categories, i.e., embedding-based methods [15, 38, 49], path-based
methods [11, 14, 31] and propagation-based methods [37, 39, 51].
Among them, the propagation-based methods usually could achieve
state-of-the-art results by recursively propagating the information
from multi-hop nodes to refine the representation of users and
items over the entire KG. For instance, Wang et al. [40] propose the
concept of collaborative knowledge graph (CKG) to encode user
behaviors and item knowledge as a unified relational graph, and
further explore high-order connectivity with semantic relations
in CKG for the recommendation. MVIN [35] gathers personalized
knowledge information in the KG (user view) and further considers
the difference among layers (entity view) to ultimately enhance
item representations. CKAN [42] explicitly encodes the user-item
interactions and naturally combines them with knowledge associa-
tions in an end-to-end manner.

Compared to previous methods, there are several key advantages
in our proposed model: i) KADM combines the collaborative signals
from the user-item interaction data with knowledge associations
in a dual structure. Both kinds of information could complement
each other to achieve better recommendation performance. ii) With
relation-aware attention mechanism, KADM captures the various
influence from different relation-paths during the information prop-
agation process, while most of the previous methods are node-based
and treat them equally. iii) KADM is based on the computation
of enclosing subgraph extracted from the specific context while
most methods work directly on the whole graph. It can alleviate
the negative effects of irrelevant nodes in the propagation process
and reduce the size of the graph to save computing resources.

Dual Mechanism. There are many dual phenomenons in real-life
which inspire several dual structures in model design. For instance,
Xia et al. [44] propose a model-level dual learning framework to
merge the training of two dual tasks. DGCN [53] extends GCN
to dual structures, jointly considering both the local and global
consistencies in the graph. Cheng et al. [6] propose a novel deep
latent factor model named DELF with dual embeddings of users
and items for recommendation. DANSER [43] includes two dual
graph attention networks to learn deep representations for social
effects in recommendation systems.

Compared to previous methods, our model possesses several key
differences: i) KADM designs the specific sub-model for each type
of data, while others utilize sub-models of symmetric structures.
ii) In the semantic fusion module, KADM dynamically weighs the
importance of the representations from different sub-models, while
others usually straightforwardly concatenate different features vec-
tors.

3 PROBLEM FORMULATION
Assume that there are𝑚 users and 𝑛 items, we represent historical
data as the user-item interaction matrix Y ∈ R𝑚×𝑛 , where Y𝑖 𝑗 = 1
indicates an observed interaction between user 𝑖 and item 𝑗 , e.g.,
a user reads a book or a user clicks a news; otherwise Y𝑖 𝑗 = 0. In
addition, we introduce knowledge graph G = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ 𝜉, 𝑟 ∈
R} as side information in the recommendation process, in which
each triple (ℎ, 𝑟, 𝑡) indicates that there is a relationship 𝑟 from head
entity ℎ to tail entity 𝑡 , 𝜉 and R are the set of entities and relations
in KG.
Input: User-item interaction matrix Y and knowledge graph G.
Output: A novel duet representation learning framework for the
recommendation task to correctly predict the probability 𝑃𝑟 (𝑢, 𝑣)
that user 𝑢 would adopt item 𝑣 .

4 METHODOLOGY
In this section, we will provide details of the proposed knowledge-
aware duet model KADM, whose framework is illustrated in Fig. 2.
The proposed model KADM comprises four key components for
thoroughly learning the inherent characteristic of the local infor-
mation and the global information. First, knowledge complement
linkage module is used for mapping items to external entities in KG
to explore rich semantic information; Then, local model based on a
knowledge-aware co-attention mechanism and global model based
on a relation-aware GNN are designed to learn the representations
of the users and items from the local and global information, re-
spectively; Finally, semantic fusion based on a gating network is
developed to alleviate the semantic gap between both kinds of in-
formation, and the outputs are taken to compute the final predicted
value in turn. The remaining part of this section proceeds in terms
of the four components mentioned above.

4.1 Knowledge Complement Linkage
The goal of knowledge complement linkage is to link each itemwith
its corresponding entity in KG. During this process, we first utilize
entity linking [25, 32] technology to retrieve related entities with
items’ titles as queries. Occasionally, an item may have more than
one entity returned during the linkage procedure. To address this
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Figure 2: Illustration of the knowledge-aware duet model KADM, which compromises four components: i) Knowledge
Complement Linkage (orange background, left), which maps items to external entities to capture rich semantic information in
KG. ii) Local Model (red background, middle), which learns local representations of users and items from the local information.
iii) Global Model (blue background, middle), which learns global representations of users and items based on the global
information. iv) Prediction (green background, right), which alleviates the semantic gap between the local and global information
by a gated network and calculates the final predicted probability.

Movie Title:
《Now You See ME》
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Figure 3: The process of knowledge complement linkage
for each item, including entity linking, disambiguating enti-
ties, extracting items’ description information and construct
items’ knowledge graph from external KGs.

problem, we further incorporate other items’ attribute information
to identify the accurate linkage entity (e.g., IMDB ID and writer
name are used for the movie and the book, respectively). Based
on the linked result, we can further extract the textual description
of each entity and its centered subgraph as side information to
enhance the recommendation process. For instance, as shown in
Fig. 3, we take the title Now You See Me as a query to retrieve the
linked entity Now You See Me in the external KG of a movie and
further extract the textual description and subgraph based on its
linked entity.

4.2 Local Representation Learning Model
The local model is proposed to explore the inner correlations be-
tween items and users based on local information. As shown in

Figure 4: Illustration of Knowledge Enriched representation
(KEE), which generates the enriched representation of items
with their textual descriptions.

Fig. 2, it mainly includes three components: i) the Knowledge En-
riched representation (KEE), which computes the initial representa-
tions for items; ii) the encoding of users and items, which constructs
the collaborative neighbor set and calculates the initial represen-
tation matrix; iii) the Knowledge-aware Co-attention Mechanism
(KCM), which selects the most informative local neighbors for each
user and item respectively.
Knowledge Enriched representation (KEE).Unlike the previous
works [13, 49] using one-hot encoding or randomly generating
representations, KEE enriches each item initial representation with
its textual description and can be learned as part of local model.
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Figure 6: Illustration of Global Model, which contains three
components the enclosing subgraph extraction, neural en-
coding of subgraph and relation-aware GNN.

As shown in Fig. 4, given the item 𝑣 and its textual description
𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚} composed of word sequences, KEE firstly uses
a representation layer that maps the item into a representation with
a lookup table [45], then utilizes a CNN model to process the word
sequence, which performs remarkably well for modeling sentence
representation [17, 46]. Concretely, it embeds each word 𝑑𝑖 into
d𝑖 using representation layer, composes the word representations
using CNN filters, and the maximum value of each dimension is
obtained through max-pooling to generate the description repre-
sentationD. And finally it is combined with the item representation
v to learn the KEE representation vKEE with a two-layer DNNH .
The mathematical definition of KEE is shown as follows:

𝑣, 𝑑𝑖
V−→ v, d𝑖 representation Layer

𝐹𝑞 = Wid𝑝 :𝑝+ℎ CNN
D𝑖 = max(𝐹1, . . . , 𝐹𝑞, . . . , 𝐹𝑚−ℎ) Max-Pooling
D = {D1,D2, . . . ,D𝑛} Description representation

vKEE = H(v ⊔ D) KEE representation

where V is the parameters of the representation layer, Wi and ℎ
are weights and size of the 𝑖-th filter, 𝑛 is the number of filters, and
⊔ is the concatenation operator. Furthermore, with KEE, we can
also obtain the initial representation for cold-start items without
interaction information using their textual description.
Encoding user and item. Rather than traditionally using an in-
dependent latent vector, we represent each user 𝑢 ∈ U with a se-
quence of interacted items, which can be defined as 𝑁 (𝑢) ∈ R𝐾1×1,
where 𝐾1 represent the size of each user’s neighbor set. Due to
the unbalanced neighbor distribution between users and items, we
utilize a neighbor selecting approach to select the top 𝐾1 neighbors
as users’ neighbor collection, which is based on mutual information
[52] for ranking direct neighbors. The benefit of this approach is
that it can reduce the redundancy in the neighbor set and keep the
maximum retention of all neighbor features.

Analogously, items that have interacted with the same users
in history can be considered similar to each other, which could
be defined as collaborative neighbors. Rather than treat items in-
dependently like most existing methods, we represent each item
𝑣 ∈ V with its collaborative neighbor set 𝑁 (𝑣) ∈ R𝐾2×1, where 𝐾2
represent the size of each item’s neighbor set. During this process,

the similarity or relevance between two items is calculated by the
common users who have interacted with them [43]. Specifically,
for any item pair 𝑣𝑖 and 𝑣 𝑗 , we define their similarity coefficient
𝑠𝑖 𝑗 as the proportion of users who interact with both items. These
coefficients induce an equivalence relation over items, i.e., item 𝑣𝑖
is related to item 𝑣 𝑗 if 𝑠𝑖 𝑗 > 𝜏 with 𝜏 a fixed threshold.

For encoding collaborative signals in local information, unlike
most methods considering one-side influence from users or items,
we respectively represented each user and item with its histori-
cal and collaborative neighbors extracted from local information.
Concretely, for one user-item pair (𝑢, 𝑣), we can represent them
as U ∈ R𝐾×1 and V ∈ R𝐾×1, where 𝐾 is the size of neighbor set.
Following KEE, we transform each neighbor into a low-dimensional
dense vector. Therefore, we encode local neighbors of user 𝑢 and
item 𝑣 into Xu ∈ R𝐾×𝑑 and Xv ∈ R𝐾×𝑑 , where 𝑑 is the dimension
for representation.
Knowledge-aware Co-attention Mechanism (KCM). To select
the most informative local neighbors for each user and item re-
spectively and generate more meaningful representations of users
and items, we propose a knowledge-aware co-attention module,
which is shown in Fig. 5. Given the local neighbors representation
matrix of a user Xu ∈ R𝐾×𝑑 and an item Xv ∈ R𝐾×𝑑 , we design
an attention network with multiple layers to calculate an attention
matrix A ∈ R𝐾×𝐾 as

A𝑖 𝑗 = Attention(X𝑖𝑢 ,X
𝑗
𝑣), (1)

where X𝑖𝑢 is the 𝑖-th neighbor of user 𝑢𝑖 , X
𝑗
𝑣 is the 𝑗-th neighbor of

item 𝑣𝑖 , and A𝑖 𝑗 is the calculated correlation value between them. A
contains the inner correlations among different collaborative neigh-
bors. Furthermore, we respectively calculate the attention vectors
of user or item by performing the mean-pooling operation along
column or row on the attention matrix A, which comprehensively
considers the influence of different neighbors and can be defined
as follows,

𝒂𝑢 = Mean-Pooling({𝐴𝑖 ·}𝐾𝑖=1),

𝒂𝑣 = Mean-Pooling({𝐴 · 𝑗 }𝐾𝑗=1),
(2)

where 𝒂𝑢 ∈ R𝐾×1 and 𝒂𝑣 ∈ R1×𝐾 are the importance vectors for
user 𝑢 and item 𝑣 . After that, we take the normalization values of
importance vectors as weights to calculate the local representations
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by attentively aggregating neighbor representation.

uLocal = 𝒂′𝑢
TX𝑢 , 𝒂′𝑢 = 𝜎 (𝒂𝑢 ),

vLocal = 𝒂′𝑣X𝑣, 𝒂
′
𝑣 = 𝜎 (𝒂𝑣),

(3)

where 𝜎 is the softmax function, uLocal and vLocal are the local
representations of user 𝑢 and item 𝑣 , respectively.

4.3 Global Representation Learning Model
Unlike most previous methods, which ignore the different impacts
from different relation paths and may bring negative noises during
conducting the information propagation process on the whole KG,
the proposed global model consists of three components: i) Enclos-
ing subgraph extraction, which extracts the enclosing subgraph for
the given user-item pair from knowledge graph; ii) Neural encod-
ing of subgraph, which learns a low-dimensional representation
vector for each entity and relation that preserves the structural
information of the graph; iii) Relation-aware GNN, which reveals
the different importance of relation-paths during information prop-
agation on the subgraph.
Enclosing subgraph extraction. Rather than existing methods
capturing the knowledge associations on the whole graph, in this
work, we only take the neighborhood of particular triplet in KG
into consideration to eliminate noise during propagation. To do so,
we define enclosing subgraph as the graph induced by all the entities
that occur on a path between the two target entities. For instance,

(𝑒0
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦
−−−−−−−−−−−→ 𝑒1

𝑝𝑟𝑜𝑑𝑢𝑐𝑒
−−−−−−−→ 𝑒2) is a path included in enclosing

subgraph around (𝑒0, 𝑒2).
Hence, for extracting the enclosing subgraph of the given user-

item pair (𝑢, 𝑣), we first represent user 𝑢 with its interacted items
set 𝑁 (𝑢). Secondly, we construct the entity set 𝐸 (𝑢) for user 𝑢 and
target entity 𝑒 for item 𝑣 by mapping items into their corresponding
entities in KG. Thirdly, for each entity 𝑒𝑖 ∈ 𝐸 (𝑢), we compute the
enclosing subgraph for 𝑒𝑖 and 𝑒 by taking the intersection ofN𝑘 (𝑒𝑖 )
and N𝑘 (𝑒), which are set of 𝑘-hop neighbors, and further pruning
the entities that are isolated from either entity 𝑒𝑖 or 𝑒 . Finally, as
shown in Fig. 6, we construct the enclosing graph for (𝑢, 𝑣) by
merging all the enclosing subgraphs between every entity in 𝐸 (𝑢)
and target entity 𝑒 .
Neural encoding of subgraph. Knowledge graph representation
(KGE) is an effective way to learn dense low-dimensional vector
representations for entities and relations, which preserves the struc-
tural information of the graph. Recently, translation-based KGE
methods have received great attention due to their concise models
and superior performance [38]. Therefore, in this paper, we employ
a widely used translation-based method TransR [21], which intro-
duces a projection matrix for each relation to map entity represen-
tations to their corresponding relation space. Concretely, for each
triple (ℎ, 𝑟, 𝑡) in the graph, we define that eℎ, e𝑡 ∈ R𝑑×1, e𝑟 ∈ R𝑘×1
andM𝑟 ∈ R𝑘×𝑑 as the representations of entities ℎ, 𝑡 , relation 𝑟 and
the projection matrix for relation 𝑟 respectively. The representation
is learned by optimizing the translation principle e𝑟

ℎ
+e𝑟 ≈ e𝑟𝑡 under

the constraints of e𝑟
ℎ
= eℎM𝑟 and e𝑟𝑡 = e𝑡M𝑟 , which is the mapping

representations of eℎ and e𝑡 in the relation 𝑟 ’s space. Then, the

plausibility score for the triplet (ℎ, 𝑟, 𝑡) is defined as

𝑔𝑟 (ℎ, 𝑡) = | |e𝑟
ℎ
+ e𝑟 − e𝑟𝑡 | |22 . (4)

The lower the plausibility score 𝑔𝑟 (ℎ, 𝑡), the more valid the triplet
is. To encourage the discrimination between true and false triplets,
we use the following margin-based ranking loss for training,

L𝐾𝐺 =
∑︁

(ℎ,ℎ′,𝑟 ,𝑡,𝑡 ′) ∈Γ
max(0, 𝑔𝑟 (ℎ, 𝑡) + 𝛾 − 𝑔𝑟 (ℎ′, 𝑡 ′)), (5)

where 𝛾 is the margin, and Γ = {(ℎ, 𝑟, 𝑡, 𝑡 ′) | (ℎ, 𝑟, 𝑡) ∈ G, (ℎ′, 𝑟 , 𝑡 ′) ∉
G} is the training set for KGE.

Following this way, we can initialize the representations of en-
tities and relations on the granularity of triplets by exploiting the
structural information in the extracted enclosing subgraph.
Relation-aware GNN for Representation Learning. The goal
of global model is to compute the global representations of the user-
item pair (𝑢, 𝑣) based on the enclosing subgraph extracted from
global information. We adopt the general message-passing scheme
described in [47], where a node representation is iteratively updated
by combining it with aggregation of its neighbors’ representation.
Concretely, the 𝑘-th layer of GNN is given by

a𝑘𝑖 = AGGREGATE𝑘 (h𝑘−1𝑠 : 𝑠 ∈ N (𝑡), h𝑘−1𝑡 ),

h𝑘𝑡 = COMBINE𝑘 (h𝑘−1𝑡 , a𝑘𝑡 ),

whereN(𝑡) is the set of immediate neighbors of node 𝑡 , 𝑎𝑘𝑡 denotes
the aggregated message from the neighbors, and ℎ𝑘𝑡 denotes the
latent representation of node 𝑡 in the𝑘-th layer. During themessage-
passing process, the initial latent representation ℎ0

𝑖
of any node 𝑖 is

initialized by neural encoding of subgraph with KGE in previous
components. Furthermore, this framework gives the flexibility to
plug in different AGGREGATE and COMBINE functions resulting
in various GNN architectures [36].

Inspired by the fact that message passed from different relation-
path in graph may have different influence and the multi-relational
R-GCN [30], we design a relation-aware GNN, as shown in Fig. 6,
whose AGGREGATE function is defined as

a𝑘+1𝑡 =

R∑︁
𝑟=1

∑︁
𝑠∈N𝑟 (𝑡 )

𝜔𝑘+1𝑟𝑠𝑡 W
𝑘+1
𝑟 h𝑘𝑠 , (6)

where R is the total number of relations present in graph, N𝑟 (𝑡)
is the neighbors of node 𝑡 connected with relation 𝑟 ,W𝑘+1

𝑟 is the
transformation matrix for relation 𝑟 used to propagate messages in
the 𝑘-th layer, and 𝜔𝑘+1𝑟𝑠𝑡 is the relation-path attention weight at the
𝑘-th layer corresponding to the triplet (𝑠, 𝑟, 𝑡), which is calculated
via a two-layer MLP as follow:

c = ReLU(W1 [h𝑘𝑠 ⊕ h𝑘𝑡 ⊕ e𝑟 ] + b1),

𝜔𝑘+1𝑟𝑠𝑡 = 𝜎 (W2c + b2),
(7)

where h𝑘𝑠 and h𝑘𝑡 are the latent representation of head and tail node
of a triplet at 𝑘-th layer of the GNN, e𝑟 is the learned representation
of relation 𝑟 in graph, and 𝜎 is a sigmoid function which regu-
lates the information aggregated from each neighbor. In practice, to
avoid overfitting on rare relations caused by the rapid growth in the
amount of parameters with the number of relations in the graph,
we adopt the basis sharing mechanism among the relation-specific
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transformation matricesW𝑘+1
𝑟 of each layer in GNN and also imple-

ment a form of triplet dropout, where triplets are randomly dropped
from the graph while aggregating information from the neighbor-
hood. Furthermore, given the aggregated information a𝑘+1𝑡 of node
𝑡 , we implement the COMBINE function with a self-connection of
a special relation type to compute the updated representation for
it, derived from [30]. It is given by

h𝑘+1𝑡 = LeakyReLU(W3h𝑘𝑡 + a𝑘+1𝑡 ) . (8)

Following the relation-aware GNN architecture as described above,
we obtain the global representations of items after 𝐿 layers of mes-
sage passing on the corresponding subgraph. Then, we compute the
global representation of user with its interacted items as follows,

vGlobal = h𝐿𝑣 ,

uGlobal =
1

|N (𝑢) |
∑︁

𝑣𝑖 ∈N(𝑢)
h𝐿𝑣𝑖 ,

(9)

where |N (𝑢) | is the size of item set, vGlobal and uGlobal are global
representations of item 𝑣 and user 𝑢, respectively.

4.4 Prediction with Semantic Fusion
Note that local and global information could jointly indicate user
preference on item, but for distinct user-item pairs, the importance
of the two-fold effects could be different. Therefore, inspired by
[52], we design a gating network for semantic fusion to dynamically
allocate weights to the four semantic features (vLocal, uLocal, vGlobal,
uGlobal) according to specific user-item pair.
Semantic fusionwith gating network. For a user-item pair (𝑢, 𝑣),
given the local and global representations of them from the above
two sub-models, we could derive the final representations with the
gating network as follows,

uFinal = 𝛼 · uGlobal + (1 − 𝛼) · uLocal,

𝛼 = 𝜎 (Wgate [uGlobal ⊔ uLocal]),
(10)

where uFinal is the final representation of user𝑢,𝛼 denote theweight
for global features and Wgate is a learnable transformation matrix
of the linear unit. The final representation vFinal of item 𝑣 could
also be computed in similar way. Taking the final representation as
input, we can compute the probability that user 𝑢 will adopt item 𝑣 ,

𝑃𝑟 (𝑢, 𝑣) = 𝑛𝑛(uFinal, vFinal), (11)

where 𝑛𝑛(·) can be a fully-connected network with a sigmoid acti-
vation function.
Loss function. To optimize the recommendation model, we adopt
the loss function of BPR loss [27], which assumes that the observed
interactions that indicate more user preferences should be assigned
higher predictions values than unobserved ones:

𝐿𝑜𝑠𝑠 = −
∑︁

(𝑢,𝑣𝑖 ,𝑣𝑗 ) ∈O
− ln𝜎 (𝑃𝑟 (𝑢, 𝑣𝑖 ) − 𝑃𝑟 (𝑢, 𝑣 𝑗 )) + 𝜆 | |Θ| |22, (12)

where O = {(𝑢, 𝑣𝑖 , 𝑣 𝑗 ) | (𝑢, 𝑣𝑖 ) ∈ I+, (𝑢, 𝑣 𝑗 ) ∈ I−} denotes the train-
ing set, I+ indicates the positive interactions between user 𝑢 and
items while I− is the sampled negative interaction set, 𝜎 (·) is the
sigmoid function, and Θ is the model parameter set. 𝐿2 regulariza-
tion parameterized by 𝜆 on Θ is conducted to prevent overfitting.

To optimize the loss function, we adopt the mini-batch Adam in
our implementation for its ability to adaptively control the learning
rate.

4.5 Time Complexity of KADM
For the local model, the computational complexity is 𝑂 (𝑛(𝑚 −
ℎ)ℎ𝑑 + 𝑑 (𝑛 + 𝑑)) for KEE operation, and 𝑂 (2𝐾 (𝑑 + 1)) for KCM
operation, where 𝑛 and𝑚 are the number of filters and fixed length
of description content, ℎ is the filter size in KEE, 𝐾 and 𝑑 are the
fixed neighbor size and length of embeddings, respectively, so the
computational complexity in this part is𝑂 (𝑛(𝑚 −ℎ)ℎ𝑑 +𝑑 (𝑛 +𝑑) +
2𝐾 (𝑑 + 1)). For the global model, the computational complexity for
enclosing subgraph extraction is𝑂 ((𝐾+1) ( |𝜉 |+ |𝐸 |)) while utilizing
Breadth-First Search algorithm to prune the isolated entities, and
𝑂 ( |R|𝑑𝑘) for representation learning. where |𝐸 |, |𝜉 | and |R | are
the size of edges, nodes and relations in the graph, respectively,
𝑑 is the size of node/relation embeddings. It can be seen that the
computational cost of the global model depends on the size of
the graph, which can be greatly reduced by extracting enclosing
subgraphs. In the semantic fusion part, the computation complexity
of gating network is 𝑂 (𝑑), and the computational complexity of
the last fully-connected layer is 𝑂 (𝑑2).

5 EXPERIMENTS
To comprehensively evaluate the proposed model KADM, we con-
duct experiments to answer the following research questions:
RQ1. How does KADM perform compared with state-of-the-art
models for recommendations, especially the KG-based recommen-
dation models?
RQ2.How do hyper-parameters and the key components in KADM
impact the recommendation performance?
RQ3. Could KADM provide some reasonable explanations about
user preferences benefiting from the knowledge graph and attention
mechanism?

5.1 Dataset Description
To evaluate the effectiveness of KADM, we apply our model to two
public benchmark datasets Movielens and Last-FM. The statistics
of these two datasets are shown in Table 1. The basic descriptions
about them are summarized as follows:

• MovieLens-1M1 contains approximately 1 million explicit
ratings (ranging from 1 to 5) on the MovieLens website. We
extract the 10-core data to ensure data quality.

• Last.FM2 contains musician listening information from a
set of 2 thousand users from Last.FM online music system.
Similarly, we use the 10-core setting to ensure that each user
and item pair has at least ten interactions.

In order to be consistent with the implicit feedback setting, we
transform them into implicit feedback where each user-item pair is
marked with 1 indicating that the user has rated the item positively.
The threshold of positive for MovieLens-1M is 4, while no threshold
is set for Last.FM due to their sparsity.

1https://grouplens.org/datasets/movielens/
2https://grouplens.org/datasets/hetrec-2011/
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Table 1: Basic statistics of the datasets.

MovieLens-1M Last.FM

User-Item
Feedback

#Users 6,040 1,851
#Items 3,389 2,315
#Interactions 997,024 59,781

Knowledge
Graph

#Entities 392,966 10,367
#Relations 49 63
#Triplets 2,112,838 245,043

Besides the user-item interactions, we need to construct a knowl-
edge graph for each dataset. Concretely, we follow the way in
Knowledge Complement Linkage (Sec. 4.1) to map items to Free-
base entities3 via title matching. For those items that failed to link,
we simply discard them. Furthermore, for identified entities, we
consider the triplets that are immediate neighbors of the entities
aligned with items, no matter which role (i.e., subject or object) it
serves as. To ensure the KG quality, we then filter out infrequent
entities expected for entities aligned with items (i.e., lower than
10 in both datasets) and retain the relations appearing in at least
50 triplets. The basic statistics of the extracted knowledge graph
information for the two datasets are also summarized in Table 1.

For each dataset, we randomly select 80% of interaction history
of each user to constitute the training set, and treat the remaining
as the test set. From the training set, we randomly select 20% of
interactions as validation set to tune hyper-parameters. For each
observed user-item interaction, we treat it as a positive instance,
and then conduct the negative sampling strategy to pair it with one
negative item that the user did not rate before.

5.2 Experiment Setup
Evaluation Metrics. For each user in the test set, we randomly
sample 100 items that the user has not interacted with as the neg-
ative items, considering the computational efficiency. Then each
method outputs the user’s preference scores over all the items in test
environment. To evaluate the effectiveness of top-K recommenda-
tion and preference ranking, we adopt two widely-used evaluation
protocols: recall@K and ndcg@K [4]. By default, we set K = 20. We
report the average metrics for all users in the test set.
Baselines. To evaluate the effectiveness of KADM, we compare the
proposed model with CF-based (FM and NFM), regularization-based
(CKE and CFKG), and GNN-based (KGAT, MVIN and CKAN):

• FM [28]: A basic factorization method for modeling the
second-order feature interactions between inputs. In our
evaluations, we treat ID of a user, an item, and the related
KG knowledge as input features.

• NFM [12]: The method is a state-of-the-art factorization
model, which subsumes FM under neural network. Specially,
we enrich the representation of an item with the embeddings
of connected entities in KG and employ one hidden layer on
input features as suggested in [12].

• CKE [49]: It combines CF with various information, includ-
ing structural, textual, and visual knowledge in a unified

3https://developers.google.com/freebase/

framework for the recommendation. We implement CKE as
CF plus structural knowledge in this paper.

• CFKG [1]: It applies TransE [2] on the unified graph in-
cluding users, items, entities, and relations, transforming
the recommendation task into the plausibility prediction of
(user, Interact, item) triplets.

• KGAT [40]: It employs a graph attention network on a uni-
fied graph, which includes the knowledge graph and user-
item graph, to discriminate the importance of neighbors in
graph.

• MVIN [35]: It learns the representations of items from both
the user view and the entity view. MVIN gathers the knowl-
edge in KG and the different interactions between entities
to model user preference.

• CKAN [42]: It encodes the collaborative signals that are
latent in user-item interactions and combines them with KG
in an end-to-end manner. CKAN initialize the entity set of
user and item with the collaborative signals.

Implement Details. All models are implemented based on Py-
Torch, in which the hyper-parameters are configured following
popular choices or previous research. In detail, we optimize all
models with Adam [18] optimizer, where the batch size is fixed
at 512. The default Xavier initializer [8] is used to initialize the
model parameters. We apply a grid search for some common hyper-
parameters in all models: the learning rate is tuned amongst {0.05,
0.01, 0.005, 0.001} with the decay rate of 0.9, the coefficient of 𝐿2 nor-
malization is searched in {10−5, 10−4, 10−3, 10−2}, and the dropout
ratio is tuned in {0.2, 0.3, 0.4, ..., 0.8}. For other hyper-parameters
of baselines, the settings are the same as reported in their original
papers or as default in their codes. Then for the hyper-parameters
specific to our proposed model, they are set as follows: The size
of neighbors is set at 40 for MovieLens-1M and 20 for Last.FM ac-
cording to their distribution. For the local model, the dimension
of word embeddings is 64 and is initialized with Word2vec [24]
using wiki corpus. The length of the CNN with 64 filters used to
encode description is set to 3, which refers to tri-gram. The fixed
size of descriptions is set 30 for MovieLens-1M and 40 for Last.FM
according to their distribution. For the global model, we choose
TransR [21] to learn the pre-trained entity and relation embedding
with the dimension of 128. In consideration of computational effi-
ciency, we limit the number of triples where the entity is located to
1,000 for Last.FM and 100 for MovieLens-1M and preserve 2-hop
neighbors during constructing the enclosing subgraph. The codes
of this paper are available at https://github.com/scwu1008/KADM.

5.3 Performance Comparison (RQ1)
The experiment results for algorithm overall comparison are shown
in Table 2, we have some observations from it:

• Our proposed KADM has the best performance in all
metrics on both two datasets. Overall, KADM surpasses
others significantly by around 0.05 and 0.04 on Last.FM
dataset and by 0.02 and 0.03 on MovieLens-1M dataset in
metrics of recall and ndcg at least, respectively. It indicates
that KADM has the significant power of explicitly encoding
collaborative signals with the co-attention manner and cap-
turing the rich knowledge associations contained in global
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Table 2: Comparative results of MovieLens-1M and Last.FM.
For Recall, NDCG, the larger value is better.

Model Last.FM MovieLens-1M
recall ndcg recall ndcg

FM 0.568 0.448 0.534 0.610
NFM 0.535 0.412 0.590 0.620
CKE 0.553 0.483 0.635 0.670
CFKG 0.577 0.484 0.621 0.672
KGAT 0.657 0.550 0.652 0.701
MVIN 0.672 0.583 0.658 0.713
CKAN 0.686 0.590 0.673 0.721
KADM 0.736 0.625 0.694 0.752

information with the relation-aware attention mechanism.
From another aspect, the combination of collaborative sig-
nals in local information and knowledge associations in
global information can obviously improve the recommen-
dation performance. Meanwhile, KADM has better perfor-
mance than CKAN on both datasets, which indicates that
the dual mechanism is effective for modeling different kinds
of information.

• GNN-basedmodels have better performances than other
kinds of baselines, but are affected by introduced noise.
It illustrates that capturing the information propagation on
KG with GNN can be effective to model user preference.
However, when the graph becomes denser and larger, more
noise would be introduced to the propagation process [35].
Therefore, directly computing on the enclosing subgraph
between user and item in KADM, which only contains the
relevant entities and relation-paths in large-scale KG, can be
more effective.

• Most KG-based methods perform better than tradi-
tional CF-based methods on all datasets. It demonstrates
that the usage of KG is of great help for the recommendation.
Meanwhile, it is worth noting that the performances of the
GNN-based models are better than regularized-based models,
which indicates that modeling the first-order relationship
might not fully utilize the structural information in KG.

• In most situations, the model performance on movie
data is better than music data. One possible assumption
is that there are more interactions between users and items
in local information and links among nodes in global infor-
mation, which provides sufficient information for learning
the latent embeddings.

5.4 Study Of KADM (RQ2)
To study the performance variation for our model, we conduct some
experiments on Last.FM with different hyper-parameter settings.
Effect of dimension of embedding. In KADM, we explore the
impact of different dimensions on themodel performance, including
word embedding in local model and node embedding in global
model. The results are shown in Fig. 7, which enlightens us that a
proper embedding dimension is needed. If it is too small, it would
lack expressiveness; while if it is too large, it might cause a little
overfitting, which leads to performance decline.
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Figure 7: Evaluation of KADM on Last.FM w.r.t different
hyper-parameters.

Table 3: Effect of different network configurations.

Model Last.FM MovieLens-1M
recall ndcg recall ndcg

KADM-co 0.704 0.613 0.669 0.719
KADM-rel 0.695 0.607 0.662 0.714
KADM-local 0.674 0.572 0.654 0.708
KADM-global 0.689 0.603 0.663 0.716

KADM 0.736 0.625 0.694 0.752

Effect of sampling neighbor size. We vary the size of sampling
neighbor to investigate the impact of usage of the local and global
information, which influences the initial neighbor set of user and
item in KADM. From Fig. 7, we observe that the performance
would be better with the sample size increasing, but the rate of
increase is decreasing and the computational cost increases as well.
Therefore, we can select an appropriate sample size that can keep a
good balance between model performance and complexity.
Effect of item description size. The change of description size
may influence the learned initial embedding of items in local model.
To investigate its impact, we experiment with different sizes of
description 𝐷 . From Fig. 7, it illustrates that the model performance
first increases and then decreases as the length increases. A rea-
sonable explanation is that a too small 𝐷 lacks enough capacity
to describe the item, while a too large 𝐷 is prone to be misled by
noises.
Effect of different network configurations. In order to verify
the effectiveness of some components in our model, we conduct
some ablation studies and the results are shown in Table 3. There
are three different network configurations used for ablation experi-
ments: 1) Co-attention mechanism, which can compute the inner
correlation in local information. In KADM-co, we fix the attention
weight in the local model to 1

𝐾
, where 𝐾 is the size of the sampling

neighborhood; 2) Relation-aware attention mechanism, which mod-
els the different influence of relation paths during the information
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Figure 8: A real example fromMovieLens-1M, including local
information (left) and global information (right).

propagation process; In KADM-rel, we modify the AGGREGATE
function in the global model to an averaging function, and take the
mean of the immediate neighbors as the aggregated feature. 3) Com-
bination of local and global models, which complement each other
for modeling user preferences. We conduct experiments on the local
model and the global model after removing gate network settings,
separately. As we can see, the results enlighten us that: i) The atten-
tion mechanisms are both effective to help us filter useful features
from local and global information, which is beneficial for modeling
user preference; ii) This supports our underlying hypothesis that
modeling user preference with both local and global information
could complement each other to achieve a better performance, and
hence a combination of them is more appropriate.

5.5 Case Study (RQ3)
Benefiting from the attention mechanism and knowledge graph,
we can reason on the attention matrix in local model and the high-
order connectivity of enclosing subgraph in global model to infer
the user preferences on the candidate item, offering some potential
explanations. Specially, we conduct a case study of one user-item
pair and show the computed attention matrix and the extracted
higher-order connectivity of enclosing subgraph between user 𝑢
and item 𝑖 in Fig. 8. There are three key observations: a) For local
information, KADM computes the attention matrix from it, which
is beneficial to infer the user preference. The attention weights
between collaborative neighbors of user 𝑢 and item 𝑖 can be consid-
ered as evidence of why the item meets the user preference. As we
can see, most neighbors of item 𝑖 are similar to neighbors of user 𝑢,
which denotes that the target item matches the user taste. b) For
global information, KADM captures the high-order connectivity
of enclosing subgraph extracted from it, which can also play an
important role to infer user preference. The connected paths in
the subgraph are useful for inferring user preference. For instance,
the connectivities (𝐵𝑎𝑚𝑏𝑖

𝑟3−−→ 𝑂𝑙𝑖𝑣𝑒𝑟𝑊𝑎𝑙𝑙𝑎𝑐𝑒
𝑟3−−→ 𝐷𝑢𝑚𝑏𝑜) and

(𝐵𝑎𝑚𝑏𝑖
𝑟1−−→𝑊𝑎𝑙𝑡𝐷𝑖𝑠𝑛𝑒𝑦

𝑟1−−→ 𝐷𝑢𝑚𝑏𝑜) indicate that the target item
Dumbo has the same director and publisher as the user’s favorite
movie Bambi in the past. Hence, we can generate the explanation
as Dumbo is recommended since you have watched Bambi directed
by the same director Oliver Wallace and produced by the same pro-
ducer Walt Disney. c) For the whole model, the local model and the
global model can complement each other. Concretely, even if the
target item itself has almost no related path connected with the user
in global information, we can still recommend the item through

its collaborative neighbor similarity with the user, and vice versa.
For example, we would recommend The Wizard of Oz even though
the subgraph is sparse, because the reason that its collaborative
neighbors are very similar to the user’s.

6 CONCLUSION AND FUTUREWORK
In this work, we study the task of combining the user-item interac-
tion data and knowledge graph information for top-𝑁 recommenda-
tion. We propose a duet representation learning framework KADM
to unify the local and global information, in which a local model
with a knowledge-aware co-attention mechanism is developed to
learn the local representation of items and users by discovering
the inner correlations from their collaborative neighbors, and a
global model with relation-aware GNN is designed to learn the
global representation of items and users by capturing the knowl-
edge associations in the enclosing subgraph from knowledge graph.
Extensive experiments on two real-world datasets verify the effec-
tiveness of KADM. Further evaluations on hyper-parameters and
case studies also demonstrate the advantages of KADM.

As for future work, we would make focus on the time complexity
reduction of KADM based on graph parallel computing. We also
plan to fusemore heterogeneous data to enrich the recommendation
performance while both local and global information are extremely
sparse, or consider the condition of privacy protection or dynamical
modeling problems in recommendation systems.

7 ACKNOWLEDGMENTS
Thiswork is supported byNational Key R&DProgram (2020YFB1406900),
National Natural Science Foundation of China (61902308, U21B2018,
62103323, 62161160337, 61822309, 61773310), Initiative Postdocs
Supporting Program (BX20190275, BX20200270), China Postdoc-
toral Science Foundation (2019M663723, 2021M692565), Funda-
mental Research Funds for the Central Universities (xjh032021058,
xxj022019016) and Shaanxi Province Key Industry Innovation Pro-
gram (2021ZDLGY01-02). The authors also would like to thank the
reviewers, and as well as Shuai Xiao, for their useful comments and
suggestions. Chao Shen is the corresponding author.

REFERENCES
[1] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. 2018. Learning heteroge-

neous knowledge base embeddings for explainable recommendation. Algorithms
11, 9 (2018), 137.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[3] Rose Catherine and William Cohen. 2016. Personalized recommendations using
knowledge graphs: A probabilistic logic programming approach. In Proceedings
of the 10th ACM conference on recommender systems. 325–332.

[4] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li. 2021. Sequential Recommendation with Graph Neural Networks.
In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 378–387.

[5] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu.
2012. SVDFeature: a toolkit for feature-based collaborative filtering. The Journal
of Machine Learning Research 13, 1 (2012), 3619–3622.

[6] Weiyu Cheng, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. 2018. DELF: A
Dual-Embedding based Deep Latent Factor Model for Recommendation.. In IJCAI,
Vol. 18. 3329–3335.

[7] Gintare Karolina Dziugaite and Daniel M Roy. 2015. Neural network matrix
factorization. arXiv preprint arXiv:1511.06443 (2015).

[8] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1271



conference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 249–256.

[9] Guibing Guo, Jie Zhang, and Daniel Thalmann. 2012. A simple but effective
method to incorporate trusted neighbors in recommender systems. In Inter-
national conference on user modeling, adaptation, and personalization. Springer,
114–125.

[10] Qing Guo, Zhu Sun, and Yin-Leng Theng. 2019. Exploiting side information
for recommendation. In International Conference on Web Engineering. Springer,
569–573.

[11] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong,
and Qing He. 2020. A survey on knowledge graph-based recommender systems.
IEEE Transactions on Knowledge and Data Engineering (2020).

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[13] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Tianchi Yang. 2018. Local and global
information fusion for top-n recommendation in heterogeneous information
network. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management. 1683–1686.

[14] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging meta-
path based context for top-n recommendation with a neural co-attention model.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1531–1540.

[15] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced mem-
ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 505–514.

[16] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In Proceedings of the
fourth ACM conference on Recommender systems. 135–142.

[17] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1746–1751. https://doi.org/10.3115/v1/D14-1181

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 426–434.

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[21] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. (2015), 2181–
2187.

[22] Chen Luo, Wei Pang, Zhe Wang, and Chenghua Lin. 2014. Hete-cf: Social-based
collaborative filtering recommendation using heterogeneous relations. In 2014
IEEE International Conference on Data Mining. IEEE, 917–922.

[23] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. 2011. Rec-
ommender systems with social regularization. In Proceedings of the fourth ACM
international conference on Web search and data mining. 287–296.

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[25] David Milne and Ian H Witten. 2008. Learning to link with wikipedia. In Pro-
ceedings of the 17th ACM conference on Information and knowledge management.
509–518.

[26] Andriy Mnih and Russ R Salakhutdinov. 2008. Probabilistic matrix factorization.
In Advances in neural information processing systems. 1257–1264.

[27] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[28] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. Fast context-aware recommendations with factorization machines. In Pro-
ceedings of the 34th international ACM SIGIR conference on Research and develop-
ment in Information Retrieval. 635–644.

[29] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285–295.

[30] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[31] Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S Yu, Yading Yue, and Bin Wu. 2015.
Semantic path based personalized recommendation on weighted heterogeneous
information networks. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management. 453–462.

[32] Avirup Sil and Alexander Yates. 2013. Re-ranking for joint named-entity recog-
nition and linking. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2369–2374.

[33] Zhu Sun, Qing Guo, Jie Yang, Hui Fang, Guibing Guo, Jie Zhang, and Robin
Burke. 2019. Research commentary on recommendations with side information:
A survey and research directions. Electronic Commerce Research and Applications
37 (2019), 100879.

[34] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu.
2018. Recurrent knowledge graph embedding for effective recommendation. In
Proceedings of the 12th ACM Conference on Recommender Systems. 297–305.

[35] Chang-You Tai, Meng-Ru Wu, Yun-Wei Chu, Shao-Yu Chu, and Lun-Wei Ku. 2020.
MVIN: Learning Multiview Items for Recommendation. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 99–108.

[36] Komal Teru, Etienne Denis, andWill Hamilton. 2020. Inductive relation prediction
by subgraph reasoning. In International Conference on Machine Learning. PMLR,
9448–9457.

[37] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 417–426.

[38] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
knowledge-aware network for news recommendation. In Proceedings of the 2018
world wide web conference. 1835–1844.

[39] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,
Wenjie Li, and ZhongyuanWang. 2019. Knowledge-aware graph neural networks
with label smoothness regularization for recommender systems. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 968–977.

[40] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tatseng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. (2019), 950–958.

[41] XiangWang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. 2018. Tem:
Tree-enhanced embedding model for explainable recommendation. In Proceedings
of the 2018 World Wide Web Conference. 1543–1552.

[42] Ze Wang, Guangyan Lin, Huobin Tan, Qinghong Chen, and Xiyang Liu. 2020.
CKAN: Collaborative Knowledge-aware Attentive Network for Recommender
Systems. In Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 219–228.

[43] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, and
Guihai Chen. 2019. Dual graph attention networks for deep latent representation
of multifaceted social effects in recommender systems. In The World Wide Web
Conference. 2091–2102.

[44] Yingce Xia, Xu Tan, Fei Tian, Tao Qin, Nenghai Yu, and Tie-Yan Liu. 2018. Model-
level dual learning. In International Conference on Machine Learning. PMLR,
5383–5392.

[45] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR conference on research and development in information
retrieval. 55–64.

[46] Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and Tie-Yan Liu. 2018. Towards
better text understanding and retrieval through kernel entity salience modeling.
In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 575–584.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[48] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[49] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353–362.

[50] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-
Seng Chua. 2016. Discrete collaborative filtering. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. 325–334.

[51] Jun Zhao, Zhou Zhou, Ziyu Guan, Wei Zhao, Wei Ning, Guang Qiu, and Xiaofei
He. 2019. Intentgc: a scalable graph convolution framework fusing heteroge-
neous information for recommendation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2347–2357.

[52] Kun Zhou, Wayne Xin Zhao, Shuqing Bian, Yuanhang Zhou, Ji-Rong Wen, and
Jingsong Yu. 2020. Improving conversational recommender systems via knowl-
edge graph based semantic fusion. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1006–1014.

[53] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for
graph-based semi-supervised classification. In Proceedings of the 2018 World Wide
Web Conference. 499–508.

Topic 18: Recommender System SIGIR ’22, July 11–15, 2022, Madrid, Spain

1272

https://doi.org/10.3115/v1/D14-1181

	Abstract
	1 Introduction
	2 Related work
	3 PROBLEM FORMULATION
	4 Methodology
	4.1 Knowledge Complement Linkage
	4.2 Local Representation Learning Model
	4.3 Global Representation Learning Model
	4.4 Prediction with Semantic Fusion
	4.5 Time Complexity of  KADM

	5 EXPERIMENTS
	5.1 Dataset Description
	5.2 Experiment Setup
	5.3 Performance Comparison (RQ1)
	5.4 Study Of  KADM (RQ2)
	5.5 Case Study (RQ3)

	6 Conclusion and Future Work
	7 Acknowledgments
	References



